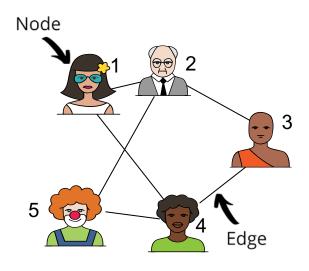
Subsampling in Large Networks

Ping Ma
Department of Statistics
University of Georgia
Malab.uga.edu

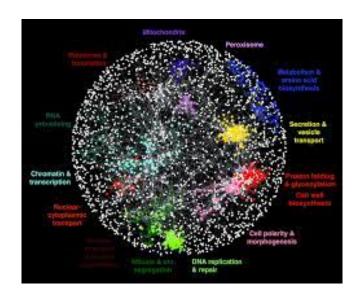
BU-Keio-Tsinghua Workshop 2023

Network

Social network



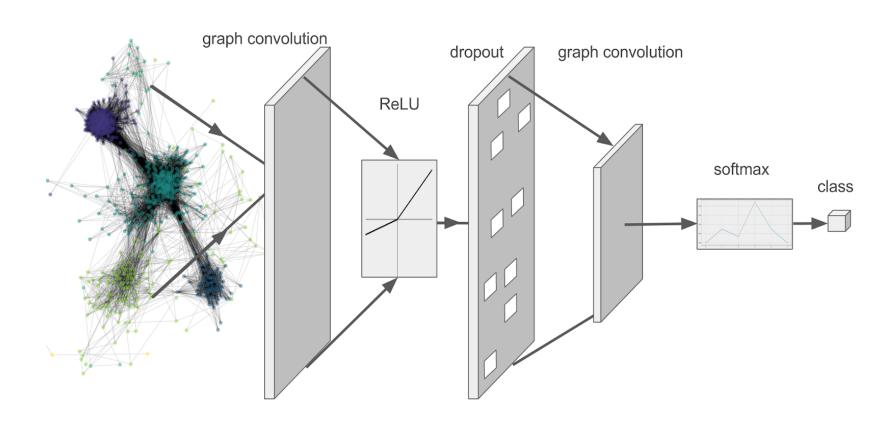
Protein-protein network



Large Networks

- Hard to visualize
- Hard to analyze
- Hard for downstream computation

Graph Neural Network



Subnetwork

- A representation (or a sketch) of the large network
- Subsampling: methods for taking subnetwork from the large network

Three Settings

The original large network is accessible

The original large network is not accessible

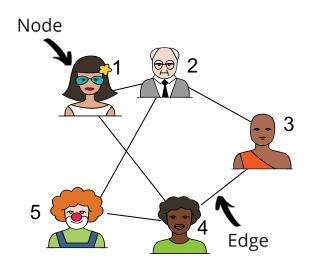
Something in between

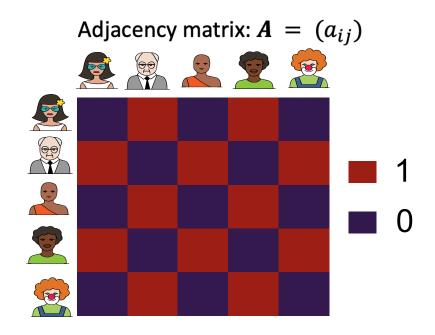
Desirable Properties of Subsampling

- Local to global: Importance indices of nodes and/or edges are local features with global (whole network) information
- Local computation: The subsampling methods do not need to compute the importance indices of all nodes and/or edges.

Graph

Social network



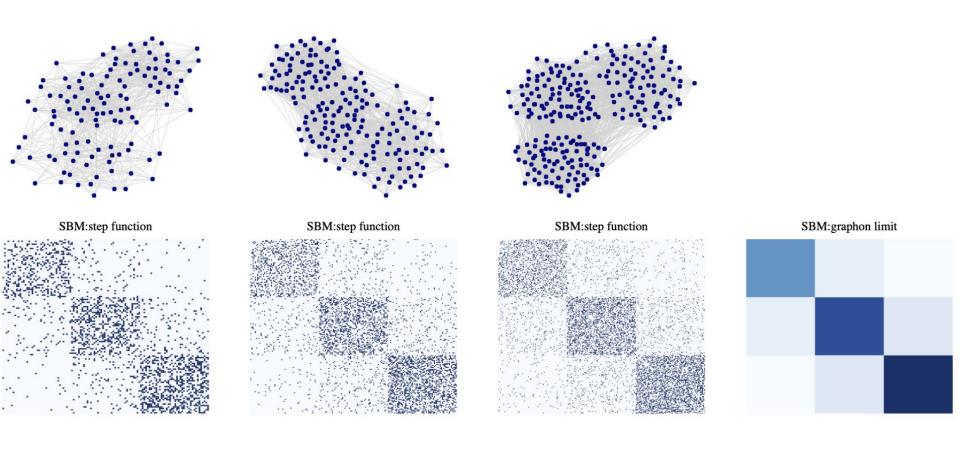


Graph and Matrix

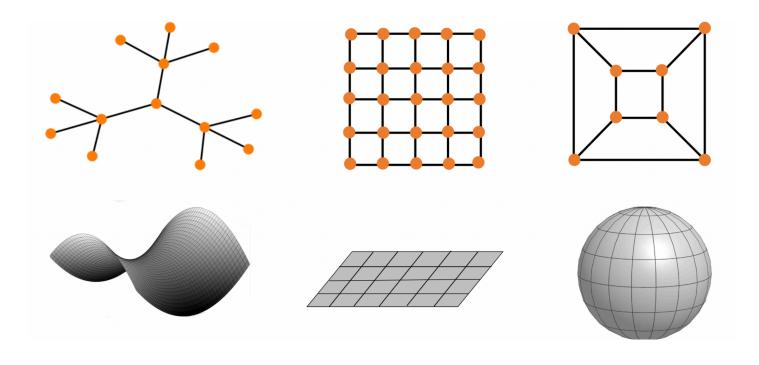
Labelled graph	Degree matrix	Adjacency matrix Laplacian matrix
6 4 5 1	$\begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$

Numerical Linear Algebra

Graphon and Graphex



Manifolds

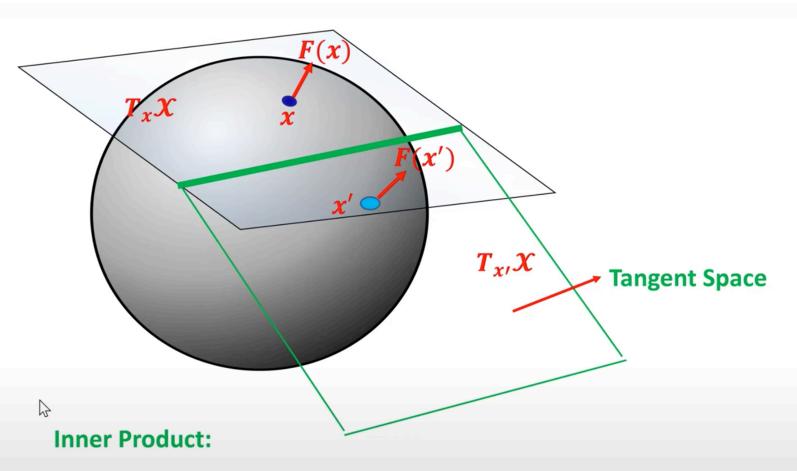


Manifolds

No predetermined coordinates

- The flexibility to choose coordinates arbitrarily
- Ensure that any objects we define globally on a manifold do not depend on a particular choice of coordinates.

Riemannian Manifolds

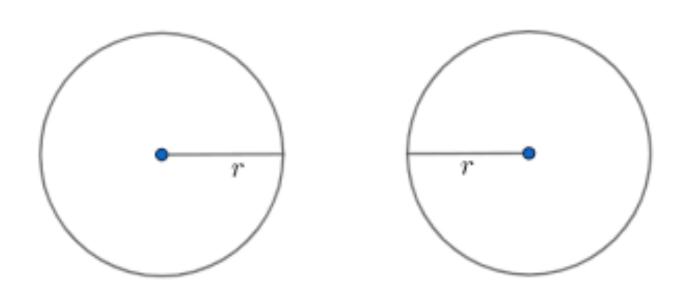


 $<.,.>_{T_x\mathcal{X}}: T_x\mathcal{X} \times T_x\mathcal{X} \to R$ is called Riemannian metric

A manifold equipped with a metric is called a Riemannian manifold.

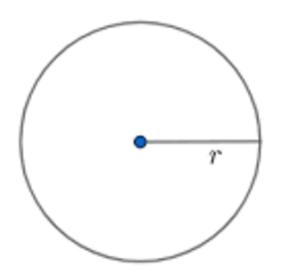
Classification Theorem of Circles

Congruence: same radius r



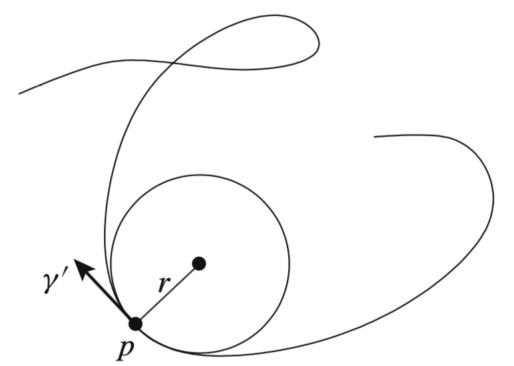
Local-to-Global Theorem of Circles

Circumference: $2\pi r$



Curvature

$$\kappa(t) = |\gamma''(t)|$$

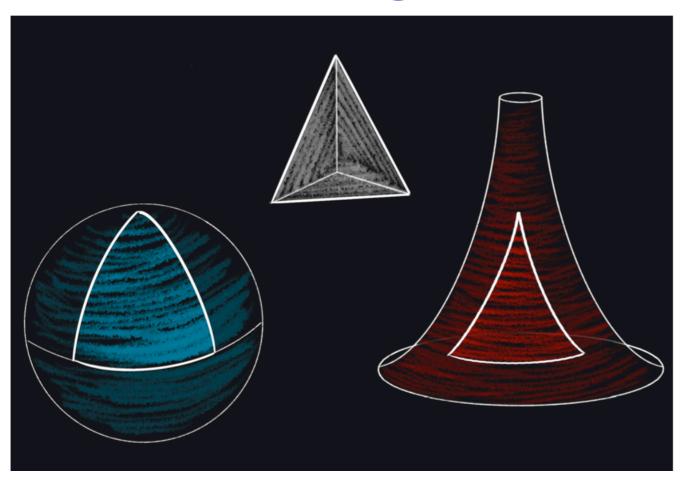


Lee (2018)

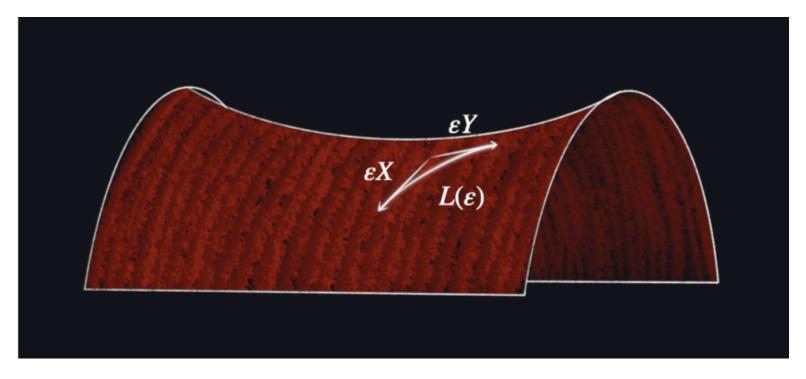
Curvature Theorems

- Classification: Two curves are congruent iff their curvatures are the same.
- Local-to-global: For a simple closed curve, the integration of its curvature is 2π .

Curvature in High Dimension



Sectional Curvature



$$L(\varepsilon) = \varepsilon ||X - Y|| \left(1 - \frac{1}{12} K(X, Y) (1 + \langle X, Y \rangle) \varepsilon^2 \right) + O\left(\varepsilon^4\right)$$

K(X, Y) is defined to be the sectional curvature of the tangent plane spanned by X and Y

Ricci Curvature

$$\mathrm{Ric}(X,X) = \frac{1}{2} \frac{(n-1)}{\omega\left(\mathbb{S}^{n-2}\right)} \oint_{\|Y\|=1 \text{ and } X \perp Y} K(X,Y) \, \mathrm{d}\mathbb{S}^{n-2}(Y)$$

 $\omega\left(\mathbb{S}^{n-2}\right)$ is the surface area of the (n-2)-dimensional sphere.

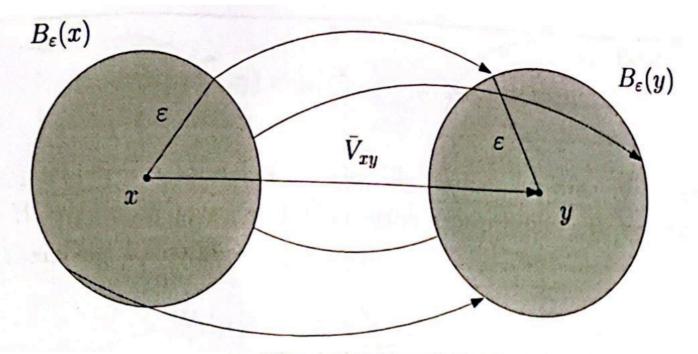
The Ricci curvature Ric(X,X) is (n-1) times the average of all of the sectional curvatures of tangent planes containing X.

$$\operatorname{Ric}(X,Y) = \frac{1}{2} \left(\operatorname{Ric}(X+Y,X+Y) - \operatorname{Ric}(X,X) - \operatorname{Ric}(Y,Y) \right)$$

Ricci Curvature

 Measuring the degree to which the geometry determined by a given Riemannian metric might differ from that of ordinary Euclidean space

Transport ball B(x) to ball B(y).

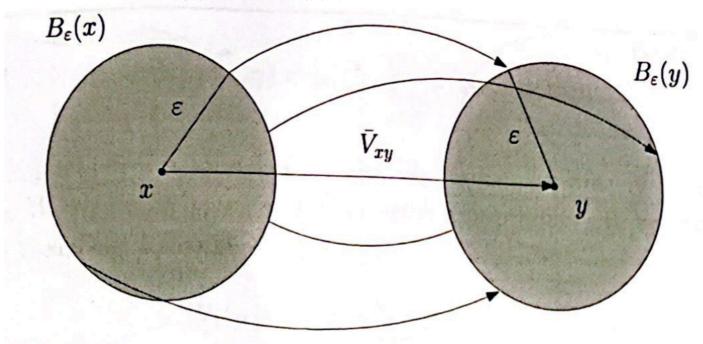


The average distance is

$$\delta \left[1 - \frac{\varepsilon^2}{2(n+2)} \operatorname{Ric}(\bar{\mathbf{v}}_{xy}) + O(\varepsilon^3 + \varepsilon^2 \delta) \right]$$

$$\delta = d(x,y)$$

Transport ball B(x) to ball B(y).

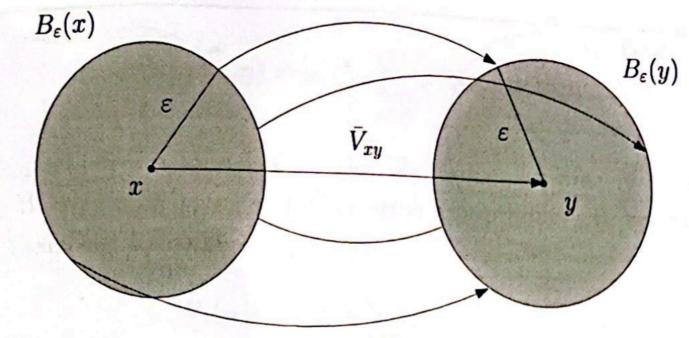


The average distance is

$$\delta = d(x, y)$$

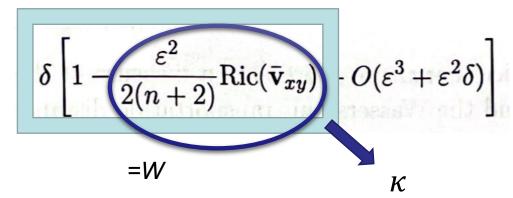
$$\delta \left[1 - \frac{\varepsilon^2}{2(n+2)} \operatorname{Ric}(\bar{\mathbf{v}}_{xy}) \right] - O(\varepsilon^3 + \varepsilon^2 \delta)$$

Transport ball B(x) to ball B(y).



The average distance is

$$\delta = d(x, y)$$

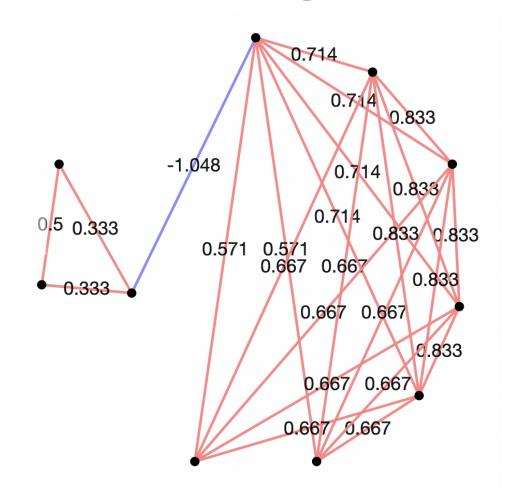


$$\kappa(u,v) = 1 - \frac{W(m_u^{\alpha}, m_v^{\alpha})}{d(u,v)} \qquad W(m_u^{\alpha}, m_v^{\alpha}) = \inf_{\xi} \sum_{u,v \in V} \xi(u,v) d(u,v)$$

$$m_u^{\alpha}(x) = \begin{cases} \alpha & \text{if } x = u \\ (1-\alpha)/d_u & \text{if } x \in \delta(u) \\ 0 & \text{otherwise} \end{cases}$$

- · Graphs are generated from manifold
- OR curvature on Graphs → Ricci curvature on Manifold

Subsampling in Graphs



Edges with large curvature are within a community; Edges with small curvature are between communities

Leonid Kantorovich (1912-1986)

Леонид Витальевич Канторович

[Kantorovich 1942]

ON THE TRANSLOCATION OF MASSES

L. V. Kantorovich*

The original paper was published in Dokl. Akad. Nauk SSSR, 37, No. 7-8, 227-229 (1942).

We assume that R is a compact metric space, though some of the definitions and results given below can be formulated for more general spaces.

Let $\Phi(e)$ be a mass distribution, i.e., a set function such that: (1) it is defined for Borel sets, (2) it is nonegative $\Phi(e) \ge 0$, (3) it is absolutely additive: if $e = e_1 + e_2 + \cdots$; $e_i \cap e_k = 0$ ($i \ne k$), then $\Phi(e) = \Phi(e_i) + \cdots$. Let $\Phi'(e)$ be another mass distribution such that $\Phi(R) = \Phi'(R)$. By definition, a translocation of masses is a function $\Phi(e, e')$ defined for pairs of (P)-set $e_i \in e'$ as such that (1) it is nonnegative and absolutely additive with respect to each of its arguments, (2) $\Psi(e, R) = \Phi(e)$, $\Psi(R, e') = \Phi'(e')$. Let $\tau(e, g)$ be a known continuous nonnegative function representing the work required to move a unit mass

We define the work required for the translocation of two given mass distributions as
$$W(\Psi \Phi \Phi') = \int \int \tau(x, x') \Psi(dx, dx') = \lim_{n \to \infty} \sum_{x} \tau(x, x') \Psi(x, x')$$

the numbers diam e_k $(i=1,2,\ldots,n)$ and diam e_k' $(k=1,2,\ldots,m)$. Clearly, this integral does exist.

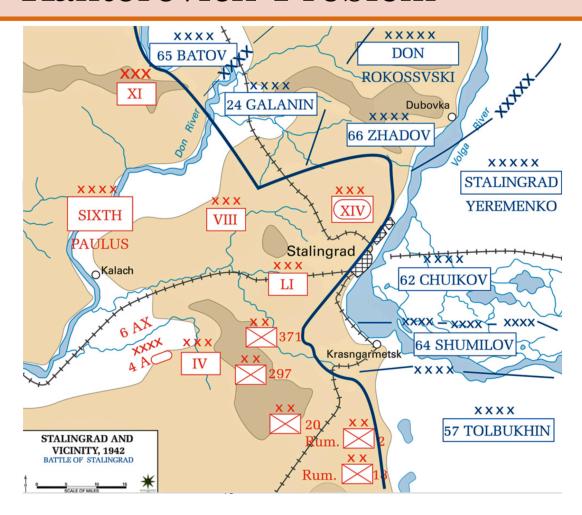
We call the quantity

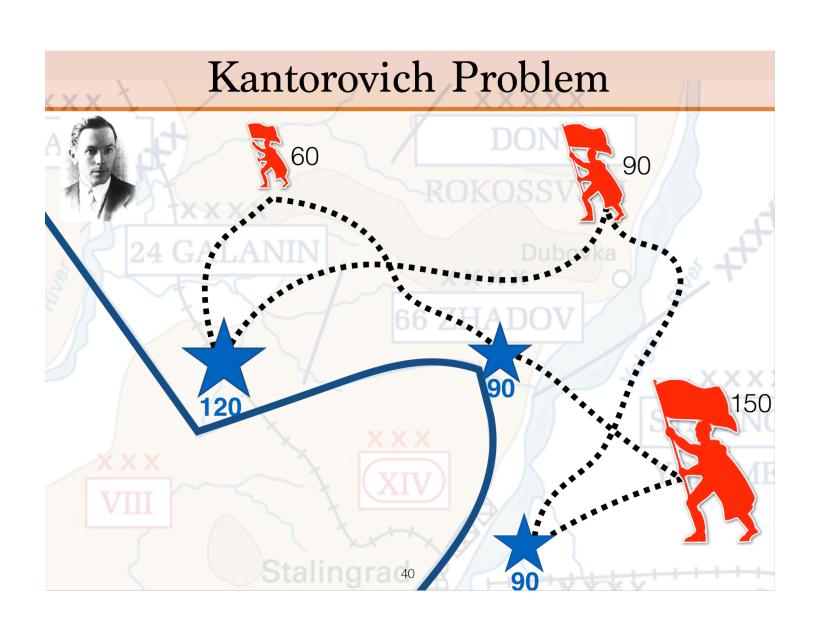
$$W(\Phi, \Phi') = \inf_{\Psi} W(\Psi, \Phi, \Phi')$$

the minimal translocation work. Since the set of all functions $\{\Psi\}$ is compact, there exists a function Ψ_0 realizing this minimun, so that

$$W(\Phi, \Phi') = W(\Psi_0, \Phi, \Phi'),$$

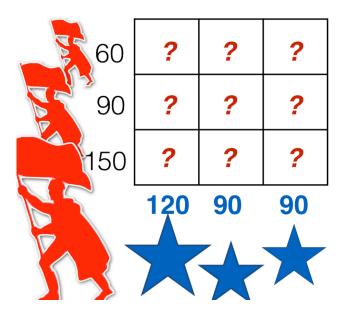
Kantorovich Problem



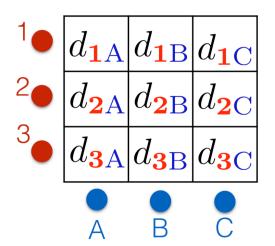


Kantorovich Problem

Transportation matrix



Distance matrix



Kantorovich Problem

Transportation matrix

Constraints

$$orall i \in \{1,2,3\}, \sum_{oldsymbol{j} \in \{ ext{A,B,C}\}} p_{oldsymbol{i}oldsymbol{j}} = oldsymbol{a_i}$$

$$\forall j \in \{A, B, C\}, \sum_{i \in \{1,2,3\}} p_{ij} = b_j$$

$$p_{ij} \ge 0$$

Distance matrix

1
$$d_{\mathbf{1}A} d_{\mathbf{1}B} d_{\mathbf{1}C}$$
2 $d_{\mathbf{2}A} d_{\mathbf{2}B} d_{\mathbf{2}C}$
3 $d_{\mathbf{3}A} d_{\mathbf{3}B} d_{\mathbf{3}C}$
A B C

Cost function

$$C(\boldsymbol{P}) = \sum_{\boldsymbol{j} \in \{\text{A,B,C}\}} \sum_{\boldsymbol{i} \in \{1,2,3\}} \boldsymbol{p_{ij}} d_{\boldsymbol{ij}}$$

Problem

$$\min_{\text{all valid } \boldsymbol{P}} C(\boldsymbol{P})$$

Kantorovitch's Formulation

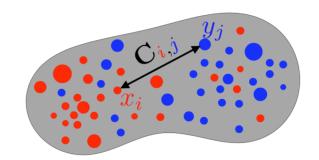
Input distributions

$$\alpha = \sum_{i=1}^{n} \mathbf{a}_i \delta_{x_i} \quad \beta = \sum_{j=1}^{m} \mathbf{b}_j \delta_{y_j}$$

Points $(x_i)_i$, $(y_j)_j$

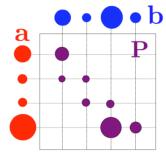
Weights $\mathbf{a}_i \geqslant 0, \mathbf{b}_j \geqslant 0.$

$$\sum_{i=1}^{n} \mathbf{a}_i = \sum_{j=1}^{m} \mathbf{b}_j = 1$$



Couplings:

$$\mathbf{U}(\mathbf{a}, \mathbf{b}) \stackrel{\text{\tiny def.}}{=} \left\{ \mathbf{P} \in \mathbb{R}_{+}^{n \times m} \; ; \; \mathbf{P} \mathbb{1}_{m} = \mathbf{a}, \mathbf{P}^{\top} \mathbb{1}_{n} = \mathbf{b} \right\}$$

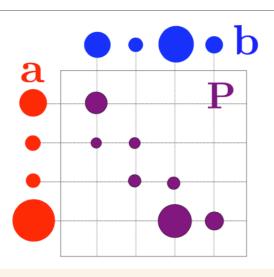


[Kantorovich 1942]

$$\min\left\{\sum_{i,j}\mathbf{C}_{i,j}\mathbf{P}_{i,j}\;;\;\mathbf{P}\in\mathbf{U}(\mathbf{a},\mathbf{b})
ight\}$$

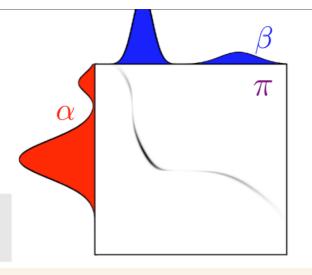
 \rightarrow Linear program, simplex $O(n^3 \log(n))$.

Wasserstein Distance



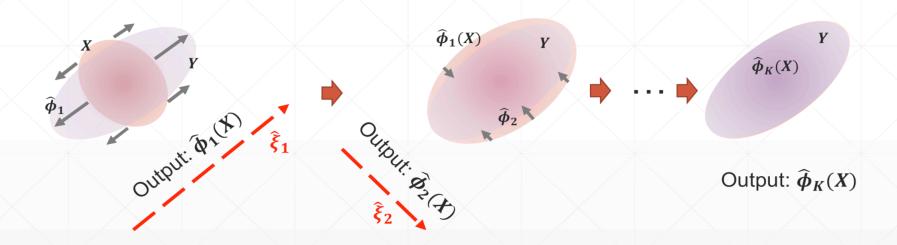
$$\pi = \sum_{i,j} \mathbf{P}_{i,j} \delta_{x_i, y_j}$$

$$c(x,y) = d(x,y)^p$$



$$W_p(\boldsymbol{\alpha}, \boldsymbol{\beta})^p \stackrel{\text{def.}}{=} \min_{\pi \in \mathcal{M}^1_+(\mathcal{X}^2)} \left\{ \int_{\mathcal{X}^2} d(\boldsymbol{x}, \boldsymbol{y})^p d\pi(\boldsymbol{x}, \boldsymbol{y}) \; ; \; \pi_1 = \boldsymbol{\alpha}, \pi_2 = \boldsymbol{\beta} \right\}$$

Projection pursuit Monge map (PPMM)



K: # *Transportations*

Computational cost: $O(Knd^2 + Knlog(n))$

Generative Models

Super resolution Dahl et al, CVPR 2017

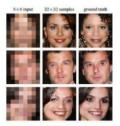
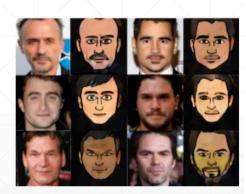


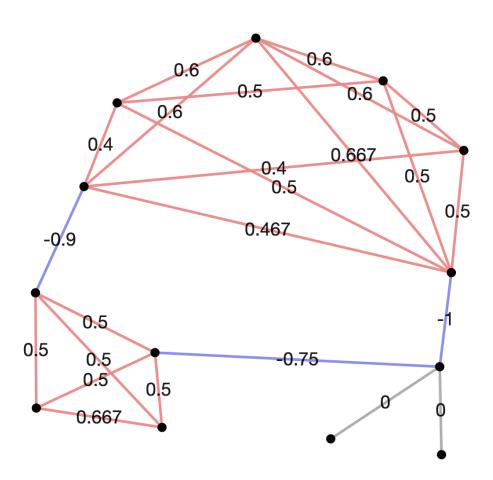
Image coloring Isola et al., CVPR 2017

Color transfer Arbelot et al., LJK 2015



Photos to Emojis Taigman et al, 2016

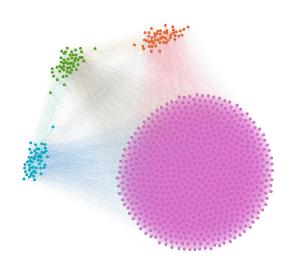
Subsampling in Graphs

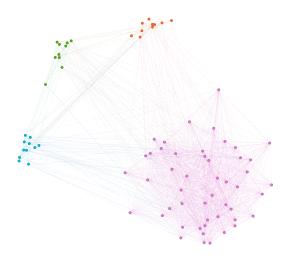


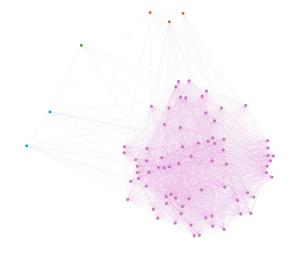
Edges with large curvature are within a community; Edges with small curvature are between communities

OR Curvature Gradient-based Subsampling

$$\left(x^{(i+1)}, y^{(i+1)}\right) = \operatorname{argmax}_{(x,y) \in \Delta\left(\left(x^{(i)}, y^{(i)}\right)\right)} \left| \kappa(x,y) - \kappa\left(x^{(i+1)}, y^{(i+1)}\right) \right|$$







Experiment Results

Dataset	Prop	ORG-sub	MHRW	CSE	FFS	Snowball	RW	MDRW
Polbooks (T: 1.88 s)	10%	0.00 (T: 0.10 s)	1.20	0.62	2.68	0.48	0.33	0.00
Polblogs (T: 48.6 s)	5%	0.00 (T: 0.23 s)	1.87	0.90	2.00	0.43	1.03	0.30
PubMed (T: NA)	2%	0.00 (T: 4.42 s)	0.30	0.80	0.40	0.20	1.20	1.80

Time of estimation of *M* is the much lower than full sample! Error of estimation of *M* is the lowest!

Acknowledgement

ICLR 2023

Shushan Wu

Huimin Cheng

Jiazhang Cai

Wenxuan Zhong

