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Large Networks

* Hard to visualize
* Hard to analyze
« Hard for downstream computation



Graph Neural Network
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Subnetwork

* A representation (or a sketch) of the large
network

« Subsampling: methods for taking
subnetwork from the large network



Three Settings

* The original large network is accessible

* The original large network is not accessible

« Something in between



Desirable Properties of
Subsampling

* Local to global: Importance indices of
nodes and/or edges are local features with
global (whole network) information

* Local computation: The subsampling
methods do not need to compute the
importance indices of all nodes and/or
edges.



Graph

Adjacency matrix: A = (a;j)
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Social network
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Graph and Matrix

Laplacian matrix

Degree matrix Adjacency matrix

Labelled graph
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Numerical Linear Algebra



Graphon and Graphex

SBM:graphon limit

SBM:step function SBM:step function

SBM:step function




Manifolds
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Manifolds

No predetermined coordinates

* The flexibility to choose coordinates
arbitrarily

* Ensure that any objects we define globally
on a manifold do not depend on a
particular choice of coordinates.



Riemannian Manifolds

Tangent Space

[
Inner Product:

<.,.>1.x' TxX XT,X — Ris called Riemannian metric

A manifold equipped with a metric is called a Riemannian manifold.

Xiong 2023



Classification Theorem of

Circles
Congruence: same radius r




Local-to-Global Theorem of
Circles

Circumference: 2nrr




Curvature

k(t) = [y"(t)]

Lee (2018)



Curvature Theorems

 Classification: Two curves are congruent iff
their curvatures are the same.

* Local-to-global: For a simple closed curve,
the integration of its curvature is 2.



Curvature in High Dimension

Khan (2022)



Sectional Curvature

L(e) = ¢||X — Y| (1 - II—QK(X,Y)(I + (X, Y>>82> +0 (")

K(X, Y ) is defined to be the sectional curvature of the tangent plane
spanned by X and Y



Ricci Curvature

1 (n—1)

Ric(X,X) = - ——~ ]é K(X,Y)dS" 2(Y)
2w (S"2) Jiiv =1 and X Ly

w (S"?) is the surface area of the (n—2)-dimensional sphere

The Ricci curvature Ric(X,X) is (n — 1) times the average of all of the
sectional curvatures of tangent planes containing X.

Ric(X,Y) = % (Riec(X +Y, X +Y) — Ric(X,X) - Ric(Y,Y))



Ricci Curvature

* Measuring the degree to which the

geometry determined by a given
Riemannian metric might differ from that of

ordinary Euclidean space



Olivier-Ricci Curvature

Transport ball B(x) to ball B(y).
B()

2

The average distance is 5 [l € R.ic(f' ) 4 0(83 4 825)
Ty

~2(n+2)

i = d(a:, y)



Olivier-Ricci Curvature

Transport ball B(x) to ball B(y).

B:(z)

The average distance is

i = d(.’II, y)

- O(e® + €%6)



Olivier-Ricci Curvature

Transport ball B(x) to ball B(y).
Be(z)

The average distance is 5 {1 l I 0(83 + g2 5)]
: 6 - d(.’L’, y)- \



Olivier-Ricci Curvature

W(mga mfj) = inf f(’U/, v)d(u, ’U)
d(u,v) : uge:V

VY

Q ifr=u
mo(z) =< (1—a)/d, ifx € f(u)
0 otherwise

« Graphs are generated from manifold
* OR curvature on Graphs — Ricci curvature on Manifold



Subsampling in Graphs
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Edges with large curvature are within a community;
Edges with small curvature are between communities



eonid Kantorovich (1912-1986)

Jleonnp ButanbeBny KaHTopoBuy

s s v o [ antorovich 1942]

ON THE TRANSLOCATION OF MASSES
L. V. Kantorovich™
The original paper was published 1 Dokl. Akad. Nouk SSSR, 37, No. 7-8, 227-229 (1942).

We assume that R is a compact metric space, though some of the definitions and results given below can be
formulated for more general spaces.

Let ®(c) be a mass distribution, i.c., a set function such that: (1) it is defined for Borel sets, (2) it is
nonnegative: ®(e) >0, (3) it is abolutely additive: if e = ey +e3+---; & Nex = 0 (i # k), then B(e) = Ble;) +
®(e;) +---. Lot #(¢') be another mass distribution such that $(R) = &(R). By definition, a translocation of
masses is a function ¥(e, &) defined for pairs of (B)-sets e,¢’ € R such that: (1) it is nonnegative and absolutely
additive with respect to each of its arguments, (2) W(e, R) = ®(e), ¥(R,¢) = ¥'(¢).

Let #(z,y) be a known conti ive function ing the work required to move a unit mass
fom z toy.

We define the work required for the translocation of two given mass distributions as

W@, @) - /jr(z.{,w(de, 4) = tim iz, ) ¥,

7R Lk

where ¢; are digjoint and 37 ¢, = R, ¢, are disjoint and 37" ¢} = R, 2 € &, 7, € ¢, and X is the largest of
the numbers diame; (i = 1,2,...,n) and diame} (k =1,2,...,m)
Clearly, this integral does exist.
We call the quantity
Wi(®,9) = igf W(¥,9,9)
the minimal translocation work. Since the set of all functions {¥} is compact, there exists a function ¥, realizing
this minimun, so that

W(, ) = W(¥o,®,9),




Kantorovich Problem
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Kantorovich Problem
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Kantorovich Problem
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Distance matrix




Kantorovich Problem

Transportation matrix Distance matrix
a1|P1A |P1B|P1C 1 dlA dlB dlC
az|P2A |P2B |P2C 2 dzA dZB dzg
as|P3A|P3B|P3c 3 |d3aldspldsc
b bg bc A B C
Constraints Cost function
vi € {1, 2,3}, Z Pij = @4 ciE) = Z Z Pijdij
JE{A,B,C} JE{A,B,C} i6{17273}
Vj € {A7 B, C}, Z Pi; = bj Problem
i€11,2,3} min C(P)
all valid P

PijZO



Kantorovitch’s Formulation

Input distributions

=3 a0y, B =351 b;by,
Points (2;);, (v;);

Weights a; > 0, b; > 0.

D im1 &= ZT:l b =1

Couplings:
U(a,b) = {P ¢R?™; P1,, =a,P"1, =b}

[Kantorovich 1942]

min {Zi,j Ci,jPi,j P e U(a, b)}

— Linear program, simplex O(n?log(n)).



Wasserstein Distance




Projection pursuit Monge map (PPMM)

P4 Y » u % » » Pk (X)
N / == m
- WA _a
rd s @ /" O(/ w
&.'&”/ S \ %,
S 7 2 Output: $x(X)
7 =\
7 52\4 ~/

K: # Transportations
Computational cost: 0(Knd? + Knlog(n))

Meng et al 2019 NeuriPS



Generative Models

s ground trth

F1E3E]
Super resolution mmm
Dahl et al, CVPR 2017 E‘E‘d gj

Inpainting
NVIDIA, 2018

Image coloring
Isola et al., CVPR 2017

Photos to Emojis
Taigman et al, 2016

Color transfer
Arbelot et al., LIK 2015



Subsampling in Graphs
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Edges with large curvature are within a community;
Edges with small curvature are between communities



OR Curvature Gradient-based
Subsampling

(D, y D) = argmax(x,y)eA((x“),y“)))|K(x’ y) = r(xEH,y D))




Experiment Results

Dataset Prop ORG-sub MHRW CSE FFS Snowball RW MDRW
Polbooks 10% 0.00 1.20 0.62 2.68 0.48 0.33 0.00
(T: 1.88 s) (T: 0.10 s)

Polblogs 5% 0.00 1.87 0.90 2.00 0.43 1.03 0.30
(T: 48.6 s) (T: 0.23 s)

PubMed 2% 0.00 0.30 0.80 0.40 0.20 1.20 1.80

(T: NA) (T: 4.42 s)

Time of estimation of M 1s the much lower than full

sample!

Error of estimation of M is the lowest!
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